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Abstract. The explicit embedding forms of e, for the minimal representations of the
quantum F,, E; and E; are obtained in this paper. In terms of Jimbo's method, the
spectrum-dependent R-matrices, both trigonomettic and rational, for those representations
are computed.

1. Introduction

Finding solutions to the Yang-Baxter equation plays the central role in constructing
statistical vertex models and face models [ 1-3], computing representations of the braid
group and link polynomials [4], and evaluating the correlation functions in conformal
field theory [5]. Jimbo [6] presented a principle method for computing the spectrum-
dependent solutions R {(x) to the Yang-Baxter equation. However, he gave the embed-
ding forms e, only for the quantum A%’ [7]. Lack of the explicit expression of e, is
the last obstacle to the computation for the solutions.

Fortunately, for a given representation of a given quantum Lie universal enveloping
algebra, it may be possible to obtain the explicit expression of e, especially for minimal
representations. Kuniba [8) found this expression for e, for the minimal (seven-
dimensional) representation of the quantum ., We {9, 10] computed the solutions
of the Yang-Baxter equation without a spectral parameter for the minimal representa-
tions of the quantum E;, E; and F,. Owing to lack of the expression of e;, we [11-13]
computed the spectrum-dependent solutions for the minimal representations of the
quantum E; and E, in terms of the limit conditions. As a reasonable extension, in the
present paper we are going to find out the embedding expression e, for the minimal
representations of the quantum F, as well as E; and E,, and then to compute the
spectrum-dependent solutions R,(x), both trigonometric and rational, for those rep-
tesentations. Of course, the solutions for the quantum E, and E, coincide with those
given in {11]. The explicit forms of the quantum projectors for the quantum E, E,
and F, will be published elsewhere [, 10]. The spectrum-dependent solutions for the
minimal representations of some quantum Lie enveloping algebras were listed in [14],
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Lie algebras were discussed in [15].

+ Permanent address; Institute of High Energy Physics PO Box 918 (4), Beijing 100039, People’s Republic
of China.
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The organization of this paper is as follows. In section 2, we review Jimbo's method.
The explicit embedding expression e, for the minimal representation of the quantum
F, is given in section 3. The spectrum-dependent trigonometric and rational solutions
to the Yang-Baxter equation for that representation are computed in sections 3 and
4, respectively. In sections 5 and 6 we obtain the explicit expressions e, for the minimal
representations of the quantum E, and E,, and show that the solutions given in the
previous paper [11] are correct.

2. Jimbo’s method

For a simple Lie algebra & with rank /, there are / simple roots r; and I fundamental
weights A;, j=1,2, ..., L Theirreducible representation is denoted by its highest weight
N, and the states by the weight m. Both N and m are expressed in the integral
combinations of A;:

i i
i=1 J=1

Let ro be the lowest negative root

&
Il
-
&

it (2)
i=1
The Cartan matrix is now defined:
2(r, 1)
=0 ) i, j= ol 3
alj (ri, r') !’j 0) 11 2) 2 ( )

tha s
where (#, J; denotes the inner product. In this paper we

length of the shorter root is normalized to be unity.

For quantization, a quanturn parameter g, which is not a root of unity, is introduced.
Then g;=g"»"'? is defined. Now, for a given irreducible representation N of the
quantum Lie umversal enveloping algebra g - 3 there are generators ¢;= D;"(g),
f =D (f) and h; = DXYo(hy) (or k;= Do(k;) = g instead), where j=1,2,...,1, whlch

satisfy the stand guantum 'gebra:c relations [16]
LA, hj] =0
[h:, e;] = aye [hi, 1= —ayf;

2 —2h 2 -2
qgi'—q:"" ki—ki
e, f1=8y——F—7=8;>
o q;— 4, qi—q;° (@

Z (-1)" l J e el =0 i#j
qy

D) [l;a‘f]zf.""u'"f}f.’-‘=0 i#]
qi

n=_0

where i, j=1,2,..., 1, and
[n‘J _[n)[n=1],...[n—m+1],
ml, [m][m-1],...1],

(5)
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The co-product in Vy,® Vy, defined as
A(h) = K O1+1® h
A(k) =k ®K,
Alg)= @K'+ K¢
M) =k +k®F

is a representation of g — %, but generally not irreducible. It can be reduced by an
orthogonal quantum Clebsch-Gordan matrix C,,

C.'AUL)C, =@ DY-(L,) L=¢,forh (7)
i

(6)

(Cmmnm 18 2 di xd%, orthogonal matrix with the row indices n;n, and column
indices Nm, where dy, is the dimension of N,, and N is one of N, in the Clebsch-
Gordan series. The submatrix (C, ), which reduces the co-product into the irreducible
representation N, isa d i;o X dp, matrix with the row indices n,n, and column index m.
Generally, the decomposition of the co-product is not multiplicity free, i.e. some N,
may be equal to each other.

Then
{ r )
ho= ¥ (1, o;h; = D}o( hy)
i=1 (r()s 0) (8)
k0= q Bylrg.rod/2 = D‘I;Jn(ko)
is defined.
It is assumed that the generators ea= D °( e,) and fy= DNO( So) exist in the repres-
entation space Vi, so that the quantum algebralc relations (4) are satisfied for i, j =0,
1,2,..., 1L The generaiors ¢, and f, exisi, at least for some irreducible representations

of some quantum Lie enveloping algebras. For example, Jimbo [7] gave the explicit
form e, for g — A,, Kuniba [8] gave e, for the minimal representation of g— G,. In
this paper the generators for the minimal representations of g—F,, 4 — E; and g— E;
are given explicitly. These algebras may be called the embedding of the deformation
of the corresponding Kac-Moody enveloping algebras. However, there are no

Anfie Far tha i
definitions for the co-product of ¢, and f;, and no central extensi

For the linear system
(Ry(x}, K QT+I® H]=0 {9a)
(e®k+k; '®e)R,(x)=Ry(x)(e®k; '+ kD¢) (9h)
(xeo@kot+ ko' ® eo) Ry (x) = Ry(x)(xee@kq '+ ko® ep)
(f®Kk+k'®fIR,(x)= R, (x)f, @k + K& f) (9c)
(X" fo®kot ko' ®fo) Ry = Ry(x)(x™ ' fo®@ks '+ ko® f)
Jimbo proved [6] the following.

(i) For a general value of g, the dimension of the solution space of the linear

system (9) is at most one.
(u\ A solution of (98) satisfies (9a) and (9¢),

ool LD AL agsliallts 1 = L= B

(m) A solution of (9) satisfies the Yang-Baxter equation
RIZx)RP(xy)R¥(y) = RE(¥)RP(xy) R¥(x). (10)
Let
R, (x)=PR,(x) (11)
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where P denotes the transposition, P: V@ V,» V,® V,, P(u®v) =v®@u. Now (9b)
becomes
[R,(x),A(L,)]=0 (12a)
(xko® e+ ea® kg ") Ry(x) = Ry (x)(ko® eyt xeo® k") (12b)
where I, denotes ¢, f; or b, j=1,2,...,1
Owing to the Schur theorem, from (12a) we have

Ry(xHCnu =T (Cln, Ann, (X, ) (13)

where the summed irreducible representation N, is equal to N,. If N, appears in the
Clebsch-Gordan series only once, then only one term, v = u, appears in the rus of
{(13). Because of orthogonality of the quantum Clebsch-Gordan matrix, we obtain the
expression for the spectrum-dependent solution Ii’q(x) to the Yang-Baxter equation:

qu(x) =2 (CohnAnn, (X q)(éq)N,.

(14)
N,=N,
Now, the primary object is to find Ay,
Substituting (14) into (12b), we have
Y (X (@ N vmt Y@ Nm nem) Anen (%, G)
N"'=N
= T Al X (@nm i+ XY (@) o) (15)
where
X(q)".f'm‘”m = Z (Cq)n{né,’\!'m’Dgo(kO)n{njD:!;Va(e@)nﬁ.’:z(C.';).-:in;."!m
" Ny (16)
Y(q)N’m‘,Nm = Z (Cq)ninéN'm'DqO(QO)r!ir!,Dq O(kO )niuz(cq)n,nsz'
nins

We use D}(ep) and D} "(k,) to emphasize the representation matrices of e, and kg in
Nj. Since e, corresponds to the lowest negative root ry, in (16) we have

m=m+r,. a7

Ann(x, q)isindependent of m and m’. Equation (15) is overdetermined for An-n(x, g).
The existence of R,,(x) means that equation (15) should be consistent. Because
[eo, f;1=0, j#0, it has been proved [11] that both k,® ¢; and e,® kg, ! are commutable
with A(f;), j#0. Therefore, if a solution An-n(x, q) satisfies (15) with m=N (the
highest weight), this solution must satisfy {15} with any m.

If the explicit form e, in the representation Nj is known, the spectrum-dependent
solution Iéq(x) to the Yang-Baxter equation for the representation Nj can be computed
by solving (15) with m = N. There is no principle obstacle for the cases where the
decomposition of the co-product is not multiplicity free. A typical example 'with
multiplicity is the octet representation of ¢ —sl{3). The detailed computation of R,(x)
for the octet representation was given in our previous paper [17]. In the present paper,
we compute Rq(x) for the minimal representations of g~ F,, g— Es and ¢ —E;. In
these cases the decompositions are multiplicity free so that only one term appears in
the summations of (13), {14) and (15), respectively, and A(x, g) is diagonal,
Ann(x q) =8y nAN(X, q).
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3. Trigonometric solation for ¢ — F,

First of all we list some relevant properties of the Lie algebra F,. The Dynkin diagram
of F, is given in figure 1. The Cartan matrix is as follows:

2 -1 0 o 23 21
-1 2 -1 o L {36 4 2
_ _ 18
Tl o 2 2 1 " Tls 8 6 3 (18)
o 0 -1 2/ \2 4 3 2/

The decomposition of the direct product of the minimal representation Ny = A, =[0001)
is multiplicity free:

(0001)® (0001) = (0002)@ (0010)E(1000)D (0001) & (0000) (19a)
or briefly
No® Ny=N,DN;D N; BN, D N; {(19b)

where N;=2x,, N;=X;, Ny=x,;, N,= N, and N;=0. The Casimir operator C,( N)
can be calculated by the inner product (N, N+2p) where p=3A;:

Co(Ny) = Co{ N} =12 Co(Ny) =26 (20)
Co(N,)=24 C,(N,)=18 Co(Ns)=0.

Since N, is the adjoint representation, the lowest negative root r, is
ro=—A;=-2r=3r,—4r,—2r,. (21)

In order to simplify the notation, we enumerate the states in Ny as shown in
table 1.

For the quantum F, universal enveloping algebra, the representation matrices of

e, f; and k; in N, are given in the following:

elzfl =EystEs;+Egrot Evri9t Exo21+ Ezzs

ez=.;r'2=53 st Erg+Ergrat Eis 7+ Eigzat Ersna

€3 =f3 =E) s+ E 6t Eso+ Eg 11+[2]1'I2512 14+[2]”2514 15t Eis18
+ Ezpont Byt Eagns

es=fo=Ey 2+ Egg+ E7 0+ Ey u+[2]7 2 Eqy 1t ([BV/[2D)2Eyy 13+ (131/[2D)E o3 16
+[212E 416t Eysys+ Eyz 20 Eje 21+ Eas 2

hy=Es4— Esst Ego— Er7t Eys~ Eygrot Ev717— Evv ot Eoso— Exxnnt Exz g~ Eny

hy=E;3—Ey 4+ E;7-Esot Egryy~ Erziat Eisis— Ein it Eig s
~EyatEnan=Exnu

hy=E;;— Ey 3t E 4t Ess—Eso—Eqq+ Eoo=Ejnnt2E; 13- 2E5 151 Ej616
—Eis1st Exozt Eyy o1~ Exn = Eaz 23t Ezaza— Ejszs

hi=Ey —E;;+ Egst E77— Ess+ Ego— Erqrot2En n—En 2t Eis s
—2Es16t Err v Eigs¥ Eio o= Ez020— Ezy 21+ Ezs 25— Eg 26 (22)
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o —Om——— FY

1 2 3 4

Figure 1. Dynkin diagram of F,.

where the tilde denotes transpose,
(-Eij)kl = sl'ksjl' (23)

and hereafter the square bracket [m] without a subscript is used to denote that with
a subscript g:
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the representation with the highest weight N of g —sl(2), we have

h|nt) = mim)

elm—2)=Tn(q)|m) flmy=T 3 (q)|m ~2)
Ny | NtTm||N-m
o[

There are four independent subalgebras g —sl{2). If the state in the representation Ny
of g—F, is a simple weight, the matrix elements of the generators of q— F, are
determined completely by the properties of the subalgebras. When the states are
multiple, those states should be combined so that the states belong to the multiplets
of the subalgebras. In the representation N, the states 13 and 14 are multiple (see
table 1). We choose the state 13 to be a singlet of the third subalgebra g - s1(2), spanned
by e;, f3 and h,, and the state 14 to belong to a triplet with the states 12 and 15:

A2y =[21""14) 14y =12]"715) H13)=£[15=0
e|15y=[21"14) ey14) =[2]"212) 23|12y = e4|13) =0,
For the fourth subalgebra g —sl(2), spanned by e,, f, and k, both states 13 and 14 are
the combinations of the triplet and singlet. Suppose that
f11)y=a|13)+ b|14).
From (25} and (1) we have
fresful11) = [216]14) = £ faes|11) = f2£319) = £3(12) = [2]"/*[14).

Therefore, b =[2]""/%. From a®+ b*=[2] we have a = ([3]/[2])"/?. The method given
above can be generalized to determine the representation matrix elements of any
quantum Lie enveloping algebra.

From (8) and (21) we have

hy=—-2h,—3h,—2h,~h,
=-E\,—E;;—Eys—E,4— Ege—Egyt+ Eg 10t Es 51+ Ez;3 53
+ Eop0a% Eas o5+ Eogag (26)
ko= q".

From (21) e, can relate those states m and m’ satisfying m'=m+r,. When g=1
(Lie algebra F,) we have

e=FE;51+ Ey 2+ Eyyat Eygut Bys st Ezgs. (27)

It is easy to check that, even g # 1, (22), (26) and (27) satisfy the quantum algebraic
relation (4) with j =0, 1, 2, 3, 4. In other words, the embedding ¢, for g # 1 is the same
as that for g =1. This property also holds for the minimal representations of the
quantum A,, B, (spinor), C,, D, (vector and two spinor), G., F,, Es and E; universal
enveloping algebras, even though the eigenvalues of h; may not be equal to +1 or 0.

Now, in terms of the explicit forms (26) and (27) for e, and k, and the quantum
Clebsch-Gordan coefficients computed in [10], we can compute X (q) n+(w+ry.~nn and
Y(q) n(N-+ro.vw 0 (16). Note that the weight (N + ro) in the irreducible representation
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N' may be multiple, so we have to compute for all weights (N +r;) one by one.
Through a tedious calculation we obtain the non-vanishing elements of X(g) and
Y{(q) satisfying the following relations:

X(q)N(m+r0),Nm= Y(Q)N(m+ru).Nm (28(1)
where N = N;, N,, N;, N, and N;, respectively, and

X(q)N’(m+rn).Nm = _qCZ(N')_CZ(N) Y(q)N'(m+rn),Nm (28b)

where the pair (N, N') or (N’, N) denotes (N;, N,), (N;, N3), (N;, N} or ( N,, Ns).

Therefore, from (15) we have :
(x=g)AN(x,q)=(1
. 81 a T S
{(x—g)An(x gj=(1

- xqz)ANz(xa Q)

By a R
A JANAA )

{29)
(x=g")An(x, ) = (1~xq*)An,(%, g)
(x=g"")An(x ) = (1~xq")AN(x, g).
Choosing the arbitrary factor in ﬁq(x) 50 that ‘
An(x, q)=(1-xg")(1 - xg")(1 —xq"*)(1 - xq"*) (30)

we have the spectrum-dependent solution ﬁq(x) to the Yang-Baxter equation for the
minimal representation (0001) of g — F, as follows:

Ry(x) = (1-x¢")(1-xg*)(1 —xq"*)(1 = x4"*}( C,)m( C) w,
+(x~g2)(1 = xg*)(1 = xq"2)(1 = x¢"* N C)n Cp ),
+(1-xg%)(x ~ ¢)(1 —xg")(1 - x¢"*)(C,) m(Cy ), 31
+(x—g)(1 - x¢")(x — g1 - xq" ) C)n( Co) v,
+(1-xg")(x — )1~ xg")(x = "N C) n( Co) ne.-

Obviously, we have

R,(0)= R, =Y &g SN C)n (Co)w, (322)
s
x_4éq(x)|x==no=q4onq_l=Z §P.q407C2(N1)+C2(N")(Cq)NM(C'q)NF (32b)
F13

where £, =—&=—§=§=4£&=1and C(N,) was given in (20). We also have
R, (x)Ry(x™")

= x74(1-xg"){x —¢*)(1 - xg")(x — ¢*}(1 - x¢'?)
X (x—g')(1—xg")x—q'"). (33)

4. Rational solution for ¢— F;

A rational solution to the Yang-Baxter equation can be obtained from a spectrum-
dependent trigonometric one through an appropriate limit process [16, 18]. Letting
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x=g*'" and taking the limit g1, we have

R(u, n)= PR(x, 1) =lim PR,(g*/")/(1- ¢/}’
g

= P{(14+20n/u+133n%/u*+3309°/u* +2167*/u") P,
+(~1-18n/u—95n%/u’ —102n*/u* + 216"/ u*) P,
+(=1-12n/u~59*/u*+2227% /u’ +216n*/ u*) P,
+(1+6n/u—490%/u*—174%>/u* +2160°/ u*} P,
+{1—-6n/u—49n%/ u’+ 1740 /u’ + 2160/ u*) P}

=1+(2t+18 N)m/u+(99 1+ 4P+ 30t +28 P, + 208 P;s)n*/ u”

+ (16214 60P + 108+ 252 P, + 1248 P) 0’/ u” + 216 Pn*/ u* (34)
where
P,u, = (Cq)N“(éq)Np|q=l = CN,,éN,‘

and C, is the usual cG coefficients of F,.
i
1=Y P P=P,—P,- P,+P,+P,
2=} L®1, CANJI=T I (35)

2IPF = {Cz(N“,) _2C2(N0)}Pu'

I, is the orthogonal basis of F, in the representation N,. In terms of the explicit
Clebsch-Gordan coefficients for F, we have

(Ps)m,mz.m;miz(26)_1(_I)K(m1)+x(mi)8mlr?125miﬁ12' (36)
where x(m,}=2p; if Np—m,;=3pr;, and the enumeration of m and m satisfy

_ {m when m =13 or 14

m= 27—-m when m # 13 or 14. (37)

Hereafter we use the same m to denote the weight or enumeration of the state.
The form of P, is more complicated than Ps,

(P4)mlm2,m{mi =Z Cm1mzN4mcm{miN4m
m

= (P4)m;m§_mlm2 = (P4)mzm1,m{mé
=(P4)vﬁ1rﬁ1,rﬁ,‘rﬁi (38)

where the summation occurs only for the multiple weights, i.e. for m =13 and 14. P,
contains one 28 x 28 submatrix and twenty-four 12 x 12 submatrices, and the rest of
the components of P, are vanishing. There are three different patterns of the 12x 12
submatrices, and each pattern is shared by eight 12 x 12 submatrices.
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(i) 28 x28 submatrix. The indices of rows and columns are (m, /) and (13, 14),
(14, 13). Because of the symmetry (38), it is only needed to list the following independent

COl’ﬂpOl’lCl’ltS!
(P oy 13 14 (P)n,n',,la 1a=0

(Pe) myng 1314 = (Pa) mymy 13 14 =%

B

(Py) npfiz 1314 = (P4)n3ﬁ;,l3 1=-
(P4)m,rﬁf_m;ﬁzj= (P4)n}ﬁ,, i
= =(P)mymy, 5, = 1d j=1,2,3
(P} mymy .mym; = (Pa)mymy, myny = (Pa)n 5y mosia
= (P4)rl,ﬁ|,rn3n'1_, = (P4)mzm2.m;rﬁ,
= (P4)nzﬁ1,n5ﬁ5“§ ¢
(P4)m,ﬁll,n;ﬁ2= (P4)m|rﬁ|.m3n'13 = (P4)n1ﬁ1,m2ﬁ:2
= (Pa)n,ﬁ,,ngr'u:‘ (P4)m1512,n]ﬁ3
= (P4)n:ﬁz.m3rﬁ3 = —ﬁ

where: m;=1,10, 14, n,=8,12 13; my,=2,7;, n,=6,9, my=3,5 and n,=4, 11.
(ii} The first pattern of 12x 12 submatrices. The indices of rows and columns of
each submatrices are listed as follows:

(1, 13)(1, 14)(2, 11)(3, 9)(4, 7)(5, 6) . . .

(8, 13)(8, 14)(6, 16)(4, 18)(3,20)(2, 22) ...
(10, 13)(10, 14)(7, 16)(5, 18)(3, 21)(2, 23) . ...
(12, 13X12, 14)(9, 16)(5, 20)(4, 21)(2, 24) . ..

and those obtained by replacing m to . Hereafter, the dots denote the second half
states obtained by replacing (m,, ms) to (m,, m,}. For the first submatrix we have

{(Pa)1 14.mmy, =0 (Padi13113=14
—(Pdiiau=(Pdiie=—(Piaas
=(P;) .56 =%
(P4)2 1m2n= (P4)2,,_4-,= (P4)39,39=" (P4)39,56
=(Pylazr.47=(Pise,s56=—(Pi)an 39
=~{Pg)211.56=—(Py)3s.a7=—(Pa)s7.56 =%

(iii) The second pattern of 12 x 12 submatrices. The indices of rows and columns
of each submatrix are listed as follows:

(2,13)(2, 14)(1, 16)(3, 12)(4, 10)(5, 8) . ..
(6, 13)(6, 14)(4, 15)(8, 11)(3,17)(1, 22) . ...
(7, 13)(7,14)(5,15)(10, 11)(3, 19)(1,23) ...
(9, 13)(9, 14)(5,173(12, 11)(4, 19)(1,24) . ..
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and those obtained by replacing m to m. For the first submatrix we have
(Pa)213,116={Pa); 13.312= —(Py); 13,410=(Pyda1s s8= _\s{_g

(Ps), 14,116 = (Py); 14,312= —(Py), 14,410= (P.)2 14,58 = _33’—2

(P4)213,213=?§l€ (P4)214,214=§36

V3
(P4): 13,2147 56

(P4)1 16,116 (P4)| 16,3125 _(P4)1 16,410~ (Pd)l 16,58
=(Py); 12,312= —{Ps); 12,410 = (Pa)s 12,58
=(P4)4 10,410~ _(P4)4 10,58 = (P4)58,53=53§-

(iv) The third pattern of 12 x 12 submatrices. The indices of rows and columns of
each submatrix are listed as follows:

{3, 13)(3, 14)(1, 18)(2, 15)(6, 10)(7, 8) ...
{4, 13)(4, 14)(1, 20)(2, 17)(6, 12)(9, 8) ...
(5, 13)(5, 14)(1, 21)(2, 19)(7, 12}(9, 10} . ..
(11, 13)(11, 14)(7, 173{9, 15)(6,19)(1,25) ...

and those obtained by replacing m to /. For the first submatrix we have
“(P4)3 13,1 |s=(P4)3 13,215~ (Ps); 13,610~ _(P4)3 13,78 =‘5/—§
(Pa)sraa1s= —(Padsraz1s=—(Padsracrw={(Pidsiars= 3?\%_‘
(P4)313,313=% (P4)314,314=%
(P4)313.314=‘\5/_§_
(Pi1s,118= —(Pah1s,21s= —(Pidris,s10= (Pa)11s, 78

=(Py), 15,215~ (P4)2 15,610— —(P4)2 15,78

={(Pa)s10.610= —(Pa)s 10,78 = (Pa)7s,78 =35

5. Solution for g— E;

The Dynkin diagram of E; is shown in figure 2.

Figure 2. Dynkin diagram of E.

The decomposition of the direct product of the minimal representation Ny=A,=
(100000) is multiplicity free:

(100000) ® (100000) = (200000) @D (010000) B (000010} (39a)
or briefly
N0®NO=N1@ Nz@N] (39b)
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where N, =2X,, N,=2; and N;=A;= N{. The Casimir operator C;(N) is given as
follows:

Co Np) = Co(N3) =%, G(N)) =%, CoN2) =%, (40)
The lowest negative root r, is

rg=—Ag=—r—2r;—3r;—2r,—rs—2r,. (41)

In order to simplify the notation, we enumerate the states in N, as shown in table 2.

Table 2. Enumeration of 27 states in the minimal representation N, of E,.

001100
oooi10
000010

26

27

For the quantum E; universal enveloping algebra, the representation matrices of
e, f; and h; in N, are given as follows:

€ =.f| =E ;tEntEuiwstEr st EssantEnn
€z =.fz= Ey3+EgtEp1at Eis 19+ Exg s+ Enana
33=f3= EyatEyot Ep 12t Ei7 10+ Eis 0% Eza s
e4=f~4= Eys+EstEpp st Ejg 17t Eig st Ezs s
s =fs= Esy+ Eg 0+ Eg 12t By 1at Eva 6t Ezg 27
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€s z_fs: Eyo+ EsygtEr ot Eroait Exgapt Ezzza
hM=E | —Es+E 11— E;zntEsu—EsistEiri7—Eisis+ Eioro

- E20 2U+ E21 21 _EZZ 22

hZ: EZZ_E3 3+E99_Ell 11+Elz 12_E14 14+E|5 IS_EI'I 17+Ezo 20

hy=FEy3—E 4+ Egs—Eoot Eyg o= Eiz izt Exs vt Eigis— Evo 1o
= Ezo207F Eay2a— Eps 55
hy=E44—EsstEqo— Eggt+ Ep 13+ Eys1a—Ers s+ Eig 16~ Ep7 17
—Eg 15t Ezsas— Eas 2
hs=Ess—E;;+ Egst Eyg~Ejp 10t Eyyiu—Eiz 12t Eis 13— Erg 14
—Es16t Ezso6— Enr
he=Eqa+Ess—Ege+ Es7—Egs—Ejg10t Ero19t Eag0— Eny oy
—EpnantEnn—Eyo. (42)
From (41) we have
hy=—h —2h,—3h;—2h,— hs—2h,
=—E 1 ~Ey ;- Eys—Ej—Ess—Ers+ Eynt Ena
tEza0at Esast Eg 26t Ezr 7 (43)
ko=qh°/2
The embedding e; for ¢ +# 1 is the same as that for g=1:

eo=f0=E211+5222+E243+E254+Eze5+5277- (44)

It is straightforward to check that (42), (43) and (44) satisfy the quantum algebraic

relations (4) with j=0,1,2,...,6. Through a tedious calculation we obtain the
S X{q) nnd V(n\ cﬂthf\nnn the following relations:

nnn-unni:]’nng element

nan=-vailsiilil L |

X(q)N(m+ro).Nm= Y(q)N{m+rn),Nm (450)
where N = N,;, N; and N, respectively, and

X)) nimarg),m = _qcz(N')_Cz(N) Y{q) nomiery), v (45h)

where the pair (N, N') or (N’, N) denotes {N;, N;) and (N;, N;). Therefore, we
obtain the same spectrum-dependent solution as that given in [11]):

R,(x)=(1-xg}(1=xg}(C,) v C)m, + (x = g1 = xg"HC )l €I, (46)
+(x =) (x = ) CIn(C w, -
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Table 3. Enumeration of 56 states in the minimal representation N, of E,.

ooo0o10  |!
:
0001700 |3
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mn

[ oiotooo | 100l | '®
7 ol11100 1000670 | *°
T |
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2l o101

 [owa0ror |

-
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I Tooo1o o10to00 | *

e
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oool1oe |
0000710 | *%

oooooio | %®
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6. Solution for g~ E,

The Dynkin diagram of E; is shown in figure 3.
The decomposition of the direct product of the minimal representation Ny= A=
(0000010} is multiplicity free:

{0000010) ® (0000010) = (0000020} (0000100) D (1000000) P (0000000) (47a)
or briefly
Ny®Ny= N, DN, ®N,®N, (47b)

where N; =2, No= A5, N;=2A, and N,=0. The Casimir operator C,(N) is given as
follows:

Cy(Ny) =57/4 C,(N;)=30 Cy{N,;) =28 (48)
C(N;) =18 Cy(Ny) =0.

The lowest negative root r; is
re=—A,=-2r=3r,—4r;—3r,—2rs—rs—2r,. (49)

The states in N, are enumerated as in table 3 so that the sum of the enumerations of
mand m=—mis 57.

[7
[ o le}

1 2 3 4 5 6

Figure 3. Dynkin diagram of E;.

For the quantum E; universal enveloping algebra, the representation matrices of
e;, J; and hy in N, are given as follows:

€ =f-1 =EgytEg ot B2t Eaist Eigist Eronnt Ess s+ Esom
+Eszaat Essast Esrast Eso 51

ez=f~2=Ess+E'.'9+E12 1wt Eisizt Egant Exnast EsyastEss
+ Ewart Egyast Eqgsot Esi 52

es=fy=Ess+Egu+ Eig12+ Ev 2ot Eni 03t Eas s+ Epp 52t Esae
+Esa0t Essart Esgast Esz s

e4=f4= Es 4+ Ej 3t Eaist Eigirt Exsaet By 2ot Ezgaot Ejisa
t+Ewat Eszast Esaset Eszsa

es=fs=Ey 3+ Epy 16+ Eis1a+ Evy i+ E2o03t Ezanrt Esonst Esa s
+ Ess a0t Eso axt Eaqy aat Esass

C’ﬁ:fs: E s+ Eigiot Eig ot Eapas+ Exy 2+ Eng 30t E2r 31t Ezgaa
+ Ejz 36t Esssot Essar T Ess 56
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er=fy=Es 1+ Ego+ Eg 10+ Exo 2+ Ez3 27+ Eog 29+ Eag 31+ Eao 34
tEjytEnstEgatEss
hy=Es6—Egst Eso—Ewgot Evyn=Enz 2t Enya—Egsyst Eie s
—EpggtEp9—EnntEsss—EwgwtEww— EayatEna
—Euaat Egs a5~ Ess a6t Ess a7~ Easgaz+ Esg o~ Es1 51
hy=Ess—Eget E; 19— Esot Epp o= Ergaat Evs 15— Evz 94 Evgis— B o
+ Ep 2 Eps 25+ By 3o~ Ess3st Ese 36— Ezo ot Esgao— Bz 2
+Esas=EssastEas— Esosot Esisi—Esy 2
hy=Es4—Esst Eyot Eigro—Evvnn—Enz 2t By Exat Ena~Engn
+Eysas—Exg st Eagzo— Eazant Esaza— Esgset Eyyyr— Eapaot Easas
+ Essa6— Esr a7~ Esgast Esasa—Esz 53
h4= Ey,;—E .t Ey, 11+Elz 12— EsntEuu—Eisis—EqgutE;g
—Ex st By o7t Exgos— Esozo— Esozot Esy 317 Esasat Esgaot Eiz 2
—Ep a3t Esssa— Essus— Easaet Esys3— Esasa
hs =E;;—E;3+En st Esis—Eeret Eys 17_518 151 Ez 20~ Ena
—Ej; 53+ Esgaa— Exy o1t Esoso— Esazat Esaset Esg 36— Esrart Esong
~Es a0t Esy a1~ Esz 42— Esaaat Esa 54— Ess 55
hs=E) ~E;;+Es16t Ein1e— Evo wtEnn—EnntEnn— Ens
+ Esg 26+ E27 27— Ezg 28+ E29 29 Ezo 30— Esy s+ Esz 32— Eassat Ess 35
—Ez536t Eag 3z~ Esp 30— Eay a1t Ess 55— Esg 55
hy=Ess+Ese—E;7t Ess— Eoo— Ero10t Exo 20t Ezy 23— Faa et Eze 26
—EyytExs— ExwntEnw— EnntEnn—Eun—EnntEos
+ Esgas— Esoaot Esp SO_ESI 51_552 52+ (50)
From (49) we have
ho==2h,~3h;—4h;~3h,—2h; —hs— 21
=—FE, \—Ey1—Ey3—Eq4—Ess—Eq¢—Ey9—Eso—E\yyw—En
—Eis16—Eig 10+ Esg 33t Eay vt Esasat Eag a6t Eszaat Esoso
+ Egy 51+ Esy s+ Esz 53+ Esasat Ess 55+ Esg 56 (51)
The embedding e, for g # 1 is the same as that for g=1:
eo=f~0= Eyy 1t Ey 2t Eqs3t Ese st Egg st Espet Esy o+ Esaot By
+ Esq13t Ess 16t Ese 0. (52)
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Equations (50), (51) and (52} satisfy the quantum algebraic relations (4) with j=
0,1,2,...,7. The non-vanishing elements of X(q) and Y(gq) satisfy the following
relations:

X ()Nt rg),vm = Y (@) Nmerroy,Nm (53a)
where N = N,, N,, N; and N,, respectively, and
X(Q')N’{m+ro),Nm = "qCZ(N')_C’{N} Y(q)N’(m+ru),Nm (53b)

where the pair (N, N') or (N', N) denotes ( N,, N,), (N>, N;) and ( Ny, N,). Therefore,
we have proved that the spectrum-dependent solution given in [11],

R (x)=(1-xg*)(1-xg"")(1 — xq"*}(C,) ) n,(C)) N,
+(x - g*)(1-xg")(1 ~ 2"} C) m( C)n,
+x =g x — 9" )1 - 2" ) Cny( Cod s
+(x =g Wx — "M = ") C) m(Codn, (54)

does satisfy the Yang-Baxter equation.
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