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Abstract. The explicit embedding farms of e, for the minimal representations of the 
quantum F4, & and E,  are obtained in this paper. In terms of limbo's method, the 
spectrum-dependent R-matrices, bath trigonometric and rational, far those representations 
are comrruted. 

1. Introduction 

Finding solutions to the Yang-Baxter equation plays the central role in constructing 
statistical vertex models and face models [ 1-31, computing representations of the braid 
group and link polynomials [4], and evaluating the correlation functions in conformal 
field theory [ 5 ] .  Jimbo [6] presented a principle method for computing the spectrum- 
dependent solutions R J x )  to the Yang-Baxter equation. However, he gave the embed- 
ding forms eo only for the quantum A'." [7]. Lack of the explicit expression of e, is 
the last obstacle to the computation for the solutions. 

Fortunately, for a given representation of a given quantum Lie universal enveloping 
algebra, it may be possible to obtain the explicit expression of e,, especially for minimal 
representations. Kuniba [8] found this expression for eo for the minimal (seven- 
dimensionaij representation of the quantum 4. We is, l v j  computed the soiutions 
of the Yang-Baxter equation without a spectral parameter for the minimal representa- 
tions of the quantum E6.  E7 and F4. Owing to lack of the expression of eo, we [11-13] 
computed the spectrum-dependent solutions for the minimal representations of the 
quantum E6 and E7 in terms of the limit conditions. As a reasonable extension, in the 
present paper we are going to find out the embedding expression e, for the minimal 
representations of the quantum F4 as well as E6 and E , ,  and then to compute the 
spectrum-dependent solutions R , ( x ) ,  both trigonometric and rational, for those rep- 
resentations. Of course, the solutions for the quantum E, and E7 coincide with those 
given in [ll]. The explicit forms of the quantum projectors for the quantum E,,  E ,  
and F4 will be published elsewhere [9,10]. The spectrum-dependent solutions for the 
minimal representations of some quantum Lie enveloping algebras were listed in [ 141, 
"U, Wll,, a ,,z,>p ,111 L ,U, LllC qua,,,u,,, '4. 

Lie algebras were discussed in [15]. 
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of China. 
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The organization of this paper is as follows. In section 2, we review Jimbo's method. 
The explicit embedding expression e, for the minimal representation of the quantum 
F4 is given in section 3. The spectrum-dependent trigonometric and rational solutions 
to the Yang-Baxter equation for that representation are computed in sections 3 and 
4, respectively. In sections 5 and 6 we obtain the explicit expressions e, for the minimal 
representations of the quantum Es and E,, and show that the solutions given in the 
previous paper [ l l ]  are correct. 

2. Jimbo's method 

For a simple Lie algebra 2 with rank I, there are I simple roots rj and I fundamental 
weights A,, j = 1 , 2 ,  . . . , I. The irreducible representation is denoted by its highest weight 
N, and the states by the weight m. Both N and m are expressed in the integral 
combinations of A,: 

Let robe the lowest negative root 
I 

ro= q q .  
; = I  

(2) - 

The Cartan matrix is now defined: 

a ,  = i , j = O , 1 , 2  ,..., I 
( r , ,  ri) 

(3 )  

__.L-_- Ir - \ A---&-- :--e- .--,.A.. ..t r.. +I.:* .."~~. t9Gn tlrp m...mn+:.\n thslt the 
W I I C I G  ,;, "G,,"L.=iD L,,G ,U,, c, pv"ucL.  L11 ,,.,D y'pp'c, w c  ,"..U L L L l  L U . I * I . I L I Y . .  I..... ..a1 

length of the shorter root is normalized to be unity. 
For quantization, a quantum parameter q, which is not a root of unity, is introduced. 

Then q, = q"p',)'2 is defined. Now, for a given irreducible representation No of the 
quantum Lie universal enveloping algebra q -2, there are generators e, D,""(ej), 
& I D,"(J) and h, = D,".( h,) (or k, = D,"(k,) = q? instead), where j = 1 , 2 , .  . . , I, which 
sa:isfy the ::a-da:d qozntnm z!gebreic re!edons [I61 

[hi, h,] = 0 

[hi, e,] = age, [hi,&] = -a..f 'I, 

where i, j =  I , & .  . . , I, and 
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The co-product in VNoO V,, defined as 

A(h,)= h,Ol+DOh, 

A(k,)=k,Ok,  

A(e,) = e, 0 k;' + 5 0 e, 
A(J) =JO k,-' + k, OJ 

is a representation of q - 2 ,  but generally not irreducible. It can be reduced by an 
orthogonal quantum Clebsch-Gordan matrix C,, 

C,'A(I,)C, =@ DY-(Ip)  1, = e,,J or h, (7) 
c 

(C,).,,,,,,, is a dL,,xdko orthogonal matrix with the row indices n,n2 and column 
indices Nm, where d ,  is the dimension of Ne; and N is one of Ni in the Clebsch- 
Gordan series. The submatrix (C,),,  which reduces the co-product into the irreducible 
representation N, is a d & x  d ,  matrix with the row indices n,n2 and column index m. 
Generally, the decomposition of the co-product is not multiplicity free, i.e. some N, 
may be equal to each other. 

Then 

ko= q h o ( ' w ' o ' / 2 ~  DNo(k ' l o  ) 
is defined. 

It is assumed that the generators e,- D,N"(e,) and&- D,N"(fo) exist in the repres- 
entation space VNn so that the quantum algebraic relations (4) are satisfied for i, j = 0,  
I ,  L, . . . , i. Tie grneraiors e, and j ,  ex&, ai leas; for soirre iiie&&bk iepiejeiiiaiioaj 
of some quantum Lie enveloping algebras. For example, Jimbo [7] gave the explicit 
form e, for q-A,, Kuniba [8] gave e, for the minimal representation of q -  G2. In 
this paper the generators for the minimal representations of q - F4, q - E6 and q - E, 
are given explicitly. These algebras may be called the embedding of the deformation 
of the corresponding Kac-Moody enveloping algebras. However, there are no 
de8i;i:ians fa: the CO-prodoc: of q, azd fo, aad xa ccxm! extexsix. 

. A  

For the linear system 

[ R , ( x ) ,  h, 0 U +  DO h,] = 0 (sa)  
( e jOk ,+  kJ'Oe,)R,(x)  = R , ( x ) ( e j O k ; l + k j O e j )  ( 9 6 )  
(xe,Ok,+ k ; 'Oe , )R , (x )  = R,(x)(xe,O k;'+ k,Oe,,) 

(x-'&Ok,+ k i 'O&)R,  = R,(x)(x- ' f ,Ok;'+$Ofo)  
( J O k , + k ; ' O f ; ) R , ( x ) =  R , ( x ) ( J B k ; l + ~ O J )  (9c )  

Jimbo proved [61 the following. 

system ( 9 )  is at most one. 
(i) For a general value of q. the dimension of the solution space of the linear 

(6) A so!!itio!! of (Pb) retipties (9n )  end @C)~ 
(iii) A solution of ( 9 )  satisfies the Yang-Baxter equation 

R ~ ( x ) R : ( x Y ) R : ) ( Y )  = R : ( Y ) R : ' ( x ~ ) R : ~ ( x ) .  (10) 

d,(x) = PR,(x)  (11) 
Let 
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where P denotes the transposition, P: V,@ V,- V,@ V,, P ( u 0 u )  = O@U. NOW (96)  
becomes 

[R,(x) ,A(L)l=o (120) 

( xk,@ e, + e,@ k;' ) R,( x )  = R,  (x)(k& e, + xeoO k;') (126) 
where I, denotes e,, J or h,, j = I ,  2 , .  . . , I. 

Owing to the Schur theorem, from (12n) we have 

&(x)(C, )N+=I  ( C ~ ) N ~ A N " N ~ ( X ,  4 )  (13) 

where the summed irreducible representation Nu is equal to N,. If N ,  appears in the 
Clebsch-Gordan series only once, then only one term, U = p, appears in the RHS of 
(13). Because of orthogonality of the quantum Clebsch-Gordan matrix, we obtain the 
expression for the spectrum-dependent solution R,(x) to the Yang-Baxter equation: 

N,  = N, 

Now, the primary object is to find 
Substituting (14) into (12b), we have 

(xx(q)N'm',N''m+ Y ( q ) N ' m ' . N ' ' m ) A N " N ( X ,  4 )  
N . . = N  

= A N , N ~ x .  q ) ( X ( q ) N X m ' . N m f X Y ( q ) N ' ' m ' , N m )  (15) 
N " = N ,  

where 

W~!.v~,+ , .v .~  = 1 ( C ~ ) ~ ~ ~ ~ . ~ , . ~ , D ~ ( k , ) ~ ~ ~ j D ~ ( e , ) . ~ ~ ~ ~ ( C ~ ) ~ ~ ~ ~ , ~ ~  
"l"2 
*in; 

(16) 
Y ( q ) N ' m ' , N m  1 ( c q ) ~ i ~ ; N ' ~ ' D ~ ( e o ) " i " , D ~ ( ~ ~ ' ) " ; " ~ ( c q ) " , " * N m ,  

nl-2 
"in; 

We use D p ( e o )  and D p ( k , )  to emphasize the representation matrices of eo and ko in 
Ne.  Since e, corresponds to the lowest negative root r,: in (16) we have 

(17) 
AN. ,Jx ,  q )  is independent of m and m'. Equation (15) is overdetermined for A N , ~ ( x ,  9). 
The existence of d , ( x )  means that equation (15) should be consistent. Because 
[ e,,h] = 0, j # 0, it has been proved [ l l ]  that both ko@ e, and e,@ k;' are commutable 
with A(A),  j#O. Therefore, if a solution A N . N ( ~ ,  q )  satisfies (15) with m =  N (the 
highest weight), this solution must satisfy (15) with any m. 

If the explicit form e, in the representation No is known, the spectrum-dependent 
solution RJx) to the Yang-Baxter equation for the representation No can be computed 
by solving (15) with m = N. There is no principle obstacle for the cases where the 
decomposition of the co-product is not multiplicity free. A typical example "with 
multiplicity is the octet representation of q -s1(3). The detailed computation of R,(x) 
for the octet representation was given in our previous paper 1171. In the present paper, 
we compute R,(x) for the minimal representations of q - F4, q - E, and q - E, .  In 
these cases the decompositions are multiplicity free so that only one term appears in 
the summations of (13), (14) and (15), respectively, and A(x,q) is diagonal, 
A N , N ( x ,  q)=SwNAN(X, 9 ) .  

m' = m + r,. 

. 
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3. Trigonometric solution for q - F4 
First of all we list some relevant properties of the Lie algebra F4. The Dynkin diagram 
of F4 is given in figure 1. The Cartan matrix is as follows: 

The decomposition ofthe direct product of the minimal representation No = A4 = (0001) 
is multiplicity free: 

(0OOl)O (0001) = (0002)O (0010)0(l000)O (0OOl)O (0000) ( 1 9 ~ )  

or briefly 

NOONo = NIQ N20  N 3 0 N 4 0  N5 (19b)  

where N, = 2A4, N2 = A3, NI = A , ,  N4 = No and N5 = 0. The Casimir operator C2( N) 
can be calculated by the inner product (N, N+2p) where p =X,A,: 

C2(No)=C2(Nd)= 12 C2(Nl)=26 

C2(N2)=24 C,( N3) = 18 C2(N5) = 0. 
iiOj 

Since N3 is the adjoint representation, the lowest negative root r, is 

r0 = -A, = -2r, - 3 r, - 4r, - 21,. (21)  

In order to simplify the notation, we enumerate the states in No as shown in 

For the quantum F4 universal enveloping algebra, the representation matrices of 
table 1 .  

e,, 

el = f ,  = E4 s+  E6 ,+ En ,o+ E17,9+ 

and hi in No are given in the following: 

2 ,  + €22 23 

e2 =fz= €3 4fE7 9 + €1, 12 + EIS U+ Em 20 + E23 24 

e,=?, = E, 3 +  E46+ ES 7 +  E9 ll+[21‘/2E12 ,a+[21’’2E~, 15+EI6 18 

,=I4= E, 2 + E 6 n +  E7 

+ E20 22+ E21 23 + E24 25 

12+[21-1’2E~~ 14+([31/[21)”~E,l 13+([31/[21)”~E13 16 

+[2!-1’2El,!6+E!S!8+E171”f!~2!+E25~L1 

h ,  = €4 4- € 5  5 +  E6 6- €7 i+ En 8 - €10 Bo + E17 17 - E19 19+ €20 20- E21 21 + E22 2 2 -  €21 21 

h2=  E, , - E 4 + +  € 7 7 -  Eg,+ E,, 10- €12 12+E15 1 5 -  €17 17+Ein I S  

- E20 20+ E23 23- E24 24 

h?= € 2  2 -  €3 s +  E44+ €5 5 -  € 6 6 -  E7 I +  €9 9 -  € 1 1  I I  +2Eu 1 2 - 2 ~ 5 1 5  I S +  €16 16 

- €1, Is+ E20 20+E21 21 - E22 22-  E23 23+ €24 14-E25 25 

hq= €1 I - € ,  2+E66+ € 7 7 -  E,,+ € 9 9 -  €10 io+2E,, 11-E12 12+E,5 IS 

-2E16 ,6+ €17 17- E , ,  l a +  E89 19-E2020-E212!+ E2525-E2626 (22) 
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1 2 3 4 

Figure 1. Dynkin diagram of F4. 

where the tilde denotes transpose, 

( E , ) a  = & ! J j I  (23) 

and hereafter the square bracket [ m ]  without a subscript is used to denote that with 
a subscript q:  

!I? ca!cn!ating these xstrices we "se the properties of the suba!gebrzs q -s!(2) in 
q -  F4. The representation matrices of the generators of q-sI(2) are well known. For 

Table 1. Enumeration 01 26 stales in the minimal representation No of F, 
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the representation with the highest weight N of q-s1(2), we have 

him)=  mlm) 

elm-2)=r,N(q)lm) f lm) = r ,N(q) lm -2) 

N + m  N - m  
r,N(q) = [ 4 [ 2+ 13 

There are four independent subalgebras q -s1(2). If the state in the representation No 
of q - F 4  is a simple weight, the matrix elements of the generators of q - F ,  are 
determined completely by the properties of the subalgebras. When the states are 
multiple, those states should be combined so that the states belong to the multiplets 
of the subalgebras. In the representation No, the states 13 and 14 are multiple (see 
table 1). We choose the state 13 to be a singlet of the third subalgebra q - s1(2), spanned 
by e 3 , f 3  and h,, and the state 14 to belong to a triplet with the states 12 and 15: 

f3112)= [2]'/'114) hl14)=[21'/2115) h /13)  =hl lS)  = O  
e31 15) = [2]'/'114) e3114)= [2]'/'112) 4 1 2 )  = e31 13) = 0. 

(25) 

For the fourth subalgebra q -s1(2), spanned by e4,f4 and h, both states 13 and 14 are 
the combinations of the triplet and singlet. Suppose that 

f4111)= all3)+b/14) 

From (25) and (1) we have 

f3e3f4111) = [2lb114) =f,he3111) =f,h19) =f,112) = [21'/2114). 

Therefore, b = [2]-1/2. From a'+ b'= [2] we have a = ([3]/[2])'/'. The method given 
above can be generalized to determine the representation matrix elements of any 
quantum Lie enveloping algebra. 

From (8) and (21) we have 

h,= -2h, - 3h2 - 2h3 - ha 

= - E ,  1 - E 2 2 -  E3 3 - E b a - E b  6-Es s+E,, iq+Ex 21 +En 23 

f E24 24+ Ex 25+ E26 26 (26) 
ko = 4%. 

From (21) e, can relate those states m and m' satisfying m'= m + ro. When q = 1 
(Lie algebra F4) we have 

eo = E , ,  I + '+ E,, 3 +  E,, .,+ E,, 6+ S .  (27) 

It is easy to check that, even q # 1, (22), (26) and (27) satisfy the quantum algebraic 
relation (4) with j = 0, 1,2,3,4.  In other words, the embedding e, for q # 1 is the same 
as that for q = 1. This property also holds for the minimal representations of the 
quantum A,, B. (spinor), C,,, D. (vector and two spinor), GI, F4, E, and E, universal 
enveloping algebras, even though the eigenvalues of hj may not be equal to i1 or 0. 

Now, in terms of the explicit forms (26) and (27) for e, and k, and the quantum 
Clebsch-Gordan coefficients computed in [lo], we can compute X ( q ) , , c N + , ) , N N  and 
Y ( q ) N ~ c N + , o ~ , N N  in (16). Note that the weight (N+r , )  in the irreducible representation 



440 Zhong-Qi Ma 

N '  may be multiple, so we have to compute for all weights ( N f r , )  one by one. 
Through a tedious calculation we obtain the non-vanishing elements of X ( 9 )  and 
Y ( 9 )  satisfying the following relations: 

x ( 9 ) N , ( m + r 0 1 , N m  = y ( 9 ) N i # n + r 0 ) . N m  

where N = N , ,  N 2 ,  N 3 ,  N4 and Ns, respectively, and 

4. Rational solution for q -  F4 

A rational solution to the Yang-Baxter equation can be obtained from a spectrum- 
dependent trigonometric one through an appropriate limit process [16, 181. Letting 
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= q2"/n and taking the limit q + 1, we have 

R(u ,  7) = Pfi( U, 7) = lim Pd,(q2"/")/(1 - q2"'v)4 
U-l 

= P{(1 +20q/u + 133q2/u2+330~' /u '+216~4/u4)P,  

+(-l- 18v/u -9Sv2/u2- 1027'/11'+216v~/u~)P2 

+ (-1 - 1 2 ~ / U  - Sv2/u2+ 222q'/U3+216v4/U4)P3 

+ ( 1 + 6 ? / ~  - 4 9 ~ 2 / ~ 2 - 1 7 4 ~ ' / ~ ' + 2 1 6 ~ 4 / ~ 4 ) P ~  

+(1-6q/u -49q2/u2+ 174q'/u3+216~"/u4)P5) 

= a + ( a  + 18 U ) ~ / U  + (99 I I + ~ P + ~ O ~ + ~ ~ P , + Z O ~ P , ) ~ ~ / U ~  

+(1621+60P+ 108t+252P4+ 1 2 4 8 P 5 ) ~ 3 / ~ ' + 2 1 6 P ~ 4 / ~ 4  (34) 

where 

P, =(C'JN"(e,~N,I,=I = C N " E N U  

and C, is the usual CO coefficients of F4 

; 

* = I  
I I =  E P, 

21 =I 1.0I. C L N d = X  r'. (35) 

2fP, = {C2( N,) -2C2( No)}P,. 

P = P, - P2 - P,+ P4t  Ps 

a L1 

I ,  is the orthogonal basis of F4 in the representation No. In terms of the explicit 
Clebsch-Gordan coefficients for F4 we have 

(P5)m,m2,mimi= (26)"(-1)"'"~""'"'' L &",**&n;mi (36) 

where K ( m , )  =X,p, if No- m ,  =Xjp,r,, and the enumeration of m and m satisfy 

when m = 13 or 14 
when m # 13 or 14. 

m = ( m  
27-m 

Hereafter we use the same m to denote the weight or enumeration of the state. 
The form of P, is more complicated than P5, 

( P 4 ) m t m i . m i m i = E  C m l m i N 4 m C m j m i N a m  
m 

= ( P 4 ) m j m i , m , m *  = (P4)m*m,,mimi 

=(P4)m,**,*i*i 

(37) 

where the summation occurs only for the multiple weights, i.e. for m = 13 and 14. Pa 
contains one 28 x 28 submatrix and twenty-four 12 x 12 submatrices, and the rest of 
the components of P4 are vanishing. There are three different patterns of the 12x 12 
submatrices, and each pattern is shared by eight 12x 12 submatrices. 
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(i) 28x28  submatrix. The indices of rows and columns are (m,  A )  and (13,14), 
(14.13). Because ofthe symmetry (381, it is only needed to list the following independent 
components: 

(P4) m,fi, .13 14 = (P)",e,,l, 14= 0 

(P4)m*mi.1314=(P4)m,m,.13 I & = $  

(P4)m,m,.m;n; = (P4).,npjn; 

(Pa)m,m, .m2m2 = (p4)m,m, ," ,n ,  = (Pa).,*,.nia* 

--a 
( P 4 ) n . R 2 . 1 3 1 4 = ( P )  4 n , # ,. , 3 1 4 -  28 

= -(P4)?",m,,",fl, -I - 14 j =  1,2,3 

- - (P4) . ,n , .m,f i ,  = ( P 4 ) m 2 n , . m , m ,  

= (p4)"z*z,"3~, - 2 8  

(p4)m,%,n>n> - (P4)m,* , ,m,m,  = (P4)n,ril .m2ml 

=(P4)nlR,.n,n,=(P4)m*fi*,n,R. 

= (P,).:,,.?",m, = -B 

-1 

- 

where: m l = l , 1 0 , 1 4 , n l = 8 , 1 2 , 1 3 ; m 2 = 2 , 7 ;  n 2 = 6 , 9 , m 3 = 3 , 5 a n d n 3 = 4 , 1 1 .  

each submatrices are listed as follows: 
(ii) The first pattern of 12 x 12 submatrices. The indices of rows and columns of 

(1,13)(1,14)(2,11)(3,9)(4,7)(5,6). . . 
(8, 13)(8, 14)(6,16)(4,18)(3,20)(2,22). . . 
(10, 13)(10, 14)(7,16)(5, 18)(3,21)(2,23). . . 
(12,13)(12,14)(9,16)(5,20)(4,21)(2,24). . . 

and those obtained by replacing m to A. Hereafter, the dots denote the second half 
states obtained by replacing ( m , ,  m2)  to ( m 2 ,  ml). For the first submatrix we have 

(PA 1 4 , m , m * = 0  (p4)l 13.1  1 3 = h  

-(PA, 13.2,I = ( P 4 ) 1 1 3 . 3 9 =  - ( P 4 ) 1 1 3 . 4 7  

= ( p 4 ) 1  1 3 . 5 6 = %  

( p 4 ) 2 1 1 . 2 ~ 1 = ( p 4 ) 2 1 1 . 4 7 = ( p 4 ) 3 9 , 3 9 = ( p 4 ) 3 9 . 5 6  

= ( p 4 ) 4 7 , 4 7 =  ( p 4 ) 5 6 , 5 6 =  -(p4)2 11 .39  

-1 = -(p4)2 11.5 6 = - ( p a 1 3  9 . 4 7  = - ( p 4 ) 4  7 . 5  6 - 28. 

(iii) The second pattern of 12X 12 submatrices. The indices of rows and columns 
of each submatrix are listed as follows: 

(2, 13)(2, 14)(1, 16)(3, 12)(4, 10)(5,8). . . 
(6,13)(6,14)(4,15)(8,11)(3,17)(1,22). . . 
(7, 13)(7,14)(5,15)(10, 11)(3, 19)(1,23). . . 
(9, 13)(9, 14)(5,17)(12,11)(4, 19)(1,24). . . 



The embedding e,, and the spectrum-dependent R-matrix for q-F4 443 

and those obtained by replacing m to fi. For the first submatrix we have 

( P J 2  1 3 . 1  16=(p4)2 13.3 , I =  -(Pa12 1 3 . 4 1 0 =  ( P d 2  1 3 . 5 * =  -g 

( P J 2  14.2 14-56 

Jz 
(‘412 14.1 16=(pd)2  14.3 12=-(p4)2  1 4 , 4 1 O = ( P 4 ) 2  1 4 . S 8 =  -3% 

-I 
(p4)213.213-56 

-a 
(p4)2 13 .2  14- 56 

( p 4 ) 1 1 6 . 1 1 6 = ( p 4 ) 1 1 6 , 3 1 2 = - ( p 4 ) 1  1 6 , 4 l O = ( p 4 ) 1 1 6 , 5 8  

= ( p 4 ) 3 1 2 , 3 1 2 = - ( p 4 ) 3 1 2 . 4 1 0 = ( p 4 ) ~ 1 2 , 5 8  

-1 

=(P4)410.4 1 0 =  - ( p 4 ) 4 1 0 , 5 8  = (P4)58.S&=&?. 

(iv) The third pattern of 12 x 12 submatrices. The indices of rows and columns of 
each submatrix are listed as follows: 

(3, 13)(3, 14)(1, 18)(2, 15)(6, 10)(7,8). . . 
(4, 13)(4, 14)(1,20)(2, 17)(6, 12)(9,8). . . 
(5,13)(5, 14)(1,21)(2, 19)(7, 12)(9,10). . . 
(11,13)(11,14)(7, 17)(9,15)(6,19)(1,25). . .  

and those obtained by replacing m to m. For the first submatrix we have 
-6 

- ( P 4 ) 3  3 3 . 1  18=(p4)3  13.2 1 5 = ( p 4 ) 3  13.6 10=-(p4)3 1 3 . 7 8 -  56 

(p4)3 14.1 18=- (p4)3  14.2 1 5 = - ( p 4 ) 3  14.6 I O =  ( p & ) 3  1 4 . 7 8  = 3 %  

(p4)3 14.3 14-56  
-1 (pa), 1 3 . 3 1 3 - 5 6  

JT 

--1 

--a 
(P4)313.314- 56 

(p4)1 18.1  l S = - ( P 4 ) 1  l 8 . 2 1 5 = - ( p 4 ) 1  1 8 . 6 1 O = ( p 4 ) 1 1 8 . 7 8  

(p4)2 15.2 IS= (p4)2 15.6 10=-(p4)2 15 .78  

= (PJ610.6 10= 10.78 = (P4)7*.7*=+3. 

5. Solution lor q - E6 

The Dynkin diagram of E6 is shown in figure 2 

I 2 3 4 5 

Figure 2. Dynkin diagram of E6. 

The decomposition of the direct product of the minimal representation No=A, = 
(100000) is multiplicity free: 

( 100000) 0 (100000) = (200000) 0 (010000) 0 (000010) 

No@ No = NI 0 N20 N3 

0 9 a )  

(396) 

or briefly 
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where N ,  = Zh,, N2 = h2 and N,  = A, = N t .  The Casimir operator C2( N )  is given as 
follows: 

C ~ ( N O ) = C ~ ( N J = ? ,  CA NI) = ?, C,(N2) =?. (40) 

r, = -A6 = - r ,  - 2r2 - 3r, - Zr, - rs - 2r6.  (41) 
In order to simplify the notation, we enumerate the states in No as shown in table 2. 

The lowest negative root ro is 

Table 2. Enumeration of 21 States in the minimal representation No of E6 

100000 ' F? 110000 2 

I oiiooo 



The embedding e, for q f 1 is the same as that for q = 1: 

e, =To = E,, I + EZz 2+ E,, + EZS 4+ EX, s + EZ 7. (44) 

It is straightforward to check that (42) ,  (43 )  and (44 )  satisfy the quantum algebraic 
relations ( 4 )  with j = 0, 1,2,  . . . ,6. Through a tedious calculation we obtain the 
non-vanishing e!emet'.!s of Y ( q )  and Y!q)  satisfying the fo!!owing re!iltionr: 

X ( q ) N l m + r o ) . N m  = y ( q ) N ( m + , n J , N m  (45a)  

where N = N,, N2 and N 3 ,  respectively, and 

(456)  CJ N'J-C>I N J y( 
X ( q ) N l m + r 0 J , N m  = -9 q ) N ' ( m + r n ) , N m  

where the pair ( N ,  N ' )  or ( N ' ,  N )  denotes ( N I ,  N 2 )  and ( N 2 ,  N , ) .  Therefore, we 
obtain the same spectrum-dependent solution as that given in [ll]: 

dq (x) = ( 1 - xqz)(  1 - xq8)  ( cq) NI ( cq ) N, + (x - 9') ! - xq8)  ( cq ) N>( er7 N, (46)  

+ ( x - q 2 ) ( x - q 8 ) ( c ~ ) N , ( c ~ : u ) N , .  
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Table 3. Enumeration of 56 states in the minimal representation No of E, 
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6. Solution for q - E, 

The Dynkin diagram of E7 is shown in figure 3.  

(0000010) is multiplicity free: 

(0000010) 0 (0000010) = (0000020)O (0000100)O (1000000) 0 (0000000) 

The decomposition of the direct product of the minimal representation No=A6= 

(47a)  

(476)  

or briefly 

No@ No = N,O N,O N 3 0  N 4  

where N, = 2A,, N2 = As, N,  = A ,  and N 4  = 0. The Casimir operator Cl( N )  is given as 
follows: 

C2(No) = 5714 C 2 ( N , ) = 3 0  C,( NJ = 28 

Cl(N3)  = 18 
(48)  

C2( N 4 )  = 0. 

The lowest negative root r, is 

ro= -A, = -2r ,  -3r1 -4r3 -3r4-2r5 - r6-2r1. (49)  

The states in No are enumerated as in table 3 so that the sum of the enumerations of 
m and m = - m  is 57. 
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e, =f7 = ES 7+ E6 9 +  Ea I O +  E20 ~ 4 +  E23 27f E,, 29+ E29 3 ,  + E30 34 

+ E33 37 + Em 49 + E.+, S I  + Eso 52 

hi=Eg6-Ea8+Eq9-Eioio+EiI 11-Et2 12+E13 t3-Eis I S + E M  16 

-E,a,a+E19 19-E2222+E,53s-E3a3,+E3939-E,i41+E42,2 

- E M M + E ~ S , S - E ~ ~ , ~ + E ~ , , , - E , , , , + E ~ ~ ~ ~ - E S ~ S I  

h2= ES  s- E 6 6 +  E7 7 -  E,,+ E n  12- E,, mf E , ,  15- En n +  E m  ta-  E21 21 

+ E 2 , 2 2 - E 2 s  2 5 + E 3 2 3 2 - E 3 5 3 s + E 3 6 3 6 -  E3q39fE4040-Ee242 

+ E ~ ~ ~ ~ - E ~ s ~ s + E ~ ~ ~ ~ - E s ~ s ~ + E s ~  , 1 -&252  

h3 = E4 4-Es s+ E9 9 + E I O  io- E,, ,!-E12 12+ E17 37- Em 20+ E21 2 1 -  E23 23 

f E25 2s-  Ei, i d  E29 29-  E 3 2  32 + E34 34- E36 3bf E,, 3 7 -  E a  bo+ E a  4, 

+ E a  46- Em 47- E e  48 + E 5 2  5 2 -  E,, 53 

h,= E3 ~ - E , , + E , I  ,,+E12 12-E13 ,,+E14 14- E I S  IS- E17 i 7 f  E23 23 

- E 2 6 2 6 + E 2 7 2 7 + E 2 a 2 a - E 2 9 2 9 - E 3 0 3 0 + E 3 1  31-E3434+E4040+E4242 

- E43 43+ EM 44- E43 45- E46 w+ Es, 53- Es, 54 

hs= E2 2-E3 ,+E13 i3+E,s 1 s - E ~  M + E I ~  i 7 - E ~  I S +  Eio 20-E21 21 

- E23 23 + E24 24-  E27 27 + E30 30- E33 33 i- E34 34+ E36 3 6 -  E37 37 f E39 39 

-E,o,o+E4, 41-E4i42-E4444+E5454-E5~55 

h,= E ,  ~ - E 2 2 f E i b ~ 6 + E ~ a ~ a - E ~ ~ ~ q + E i ~ 2 ~ - E 2 2 2 ~ + E ~ 3 1 ~ - E ~ s i s  

+ E 2 b 2 b + E i 7 i 7 - E i a 2 a + E 2 9 i 9 - E 3 ~ ~ ~ - E 3 1 3 i + E ~ 2 ~ 2 - E ~ 4 3 4 + E 3 s 3 s  

- E36 36+ EM 3 0 -  E3p 39-  E41 41 + ESS 5s- Es6 56 

h,= Es s +  E6 6 -  E7 7+ ES a -  E9 9-  Eio i o +  E20 20+ E23 23-  E24 24f E26 26 

- E x  IT+ E28 28- E x  2u+ E m m -  E,, , I+ E,, 3 3 -  EN,,- E v  U+ E47 47 

+ E ~ ~ ~ ~ - E ~ ~ ~ ~ + E s o s o - E s I  5 1 - E s 2 5 2 .  (50) 

From (49) we have 

h, = -2h1 - 3h2 -4h3 -3ha-2h5 - h6-2h7 

= - E ,  I- E 1 2 - E 3 3 - E q 4 - E s s - E ~ 6 - E 7 ? - E * 9 - E i i  1 1 - E 1 3 i 3  

- E l b  16- E,,  1q+ E x  3 8 +  E41 41+ E a u +  Eww+ E4ais+ Esoso  

+E,, s i + ~ s 2 s 2 + ~ s 3 s 3 + ~ s 4 s 4 ~ ~ ~ ~ s s ~ ~ ~ ~ 5 b ~  (51) 

The embedding e, for q # 1 is the same as that for q = 1: 

e o = f o =  E,, ,+ E,,,+ E,,,+ E,,,+ E,,+ E,,,+ Es,,+ ESl9+ E,, ,, 
+ E54 13 + E55 t 6 +  E36 1 9 ,  (52) 
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Equations (501, ( 5 1 )  and ( 5 2 )  satisfy the quantum algebraic relations (4) with j =  
0,1,2,. . ., 7. The non-vanishing elements of X ( 9 )  and Y ( 9 )  satisfy the following 
relations: 

X ( 9 ) h ' l m + r d , N M  Y ( 9 ) N ( m + r o l , N m  (53a) 

(536) 
where the pair(N, N ' )  or (N' ,  N )  denotes ( N , ,  A$), (N2, N,)  and ( N , ,  N J .  Therefore, 
we have proved that the spectrum-dependent solution given in 1 1 1 1 ,  

where N =  NI, N2, N, and N4, respectively, and 
C21N' ) - -C2(N)  Y ( ~ )  

x ( 9 ) N , ( m + , 0 j , N m  = -9 N'lm+roj .Nm 

d q ( x ) =  ( 1 - x 9 z ) ( 1 - x 9 ' o ) ( 1  - x 9 ' * ) ( ~ q ) N , ( ~ q ) N ~  

f ( X  - 9% 1 - X q ' %  1 - X 9 I 8 ) (  c q ) ~ , (  eq N~ 

+(X - 9 % X  -9")(l  - x 9 ' 8 ) ( c q ) ~ 2 ( e q ) ~ ,  

+ ( x  -92) (x  -910 ) (x  - q ' * ) ( c q ) N 4 ( c ) N 4  

does satisfy the Yang-Baxter equation. 
(54) 
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